skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Antonangeli, Daniele"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Constraining the thermal and compositional state of the mantle is crucial for deciphering the formation and evolution of Mars. Mineral physics predicts that Mars’ deep mantle is demarcated by a seismic discontinuity arising from the pressure-induced phase transformation of the mineral olivine to its higher-pressure polymorphs, making the depth of this boundary sensitive to both mantle temperature and composition. Here, we report on the seismic detection of a midmantle discontinuity using the data collected by NASA’s InSight Mission to Mars that matches the expected depth and sharpness of the postolivine transition. In five teleseismic events, we observed triplicated P and S waves and constrained the depth of this discontinuity to be 1,006 ± 40 km by modeling the triplicated waveforms. From this depth range, we infer a mantle potential temperature of 1,605 ± 100 K, a result consistent with a crust that is 10 to 15 times more enriched in heat-producing elements than the underlying mantle. Our waveform fits to the data indicate a broad gradient across the boundary, implying that the Martian mantle is more enriched in iron compared to Earth. Through modeling of thermochemical evolution of Mars, we observe that only two out of the five proposed composition models are compatible with the observed boundary depth. Our geodynamic simulations suggest that the Martian mantle was relatively cold 4.5 Gyr ago (1,720 to 1,860 K) and are consistent with a present-day surface heat flow of 21 to 24 mW/m 2 . 
    more » « less
  2. Abstract Earth’s inner core exhibits strong seismic anisotropy, often attributed to the alignment of hexagonal close‐packed iron (hcp‐Fe) alloy crystallites with the Earth’s poles. How this alignment developed depends on material properties of the alloy and is important to our understanding of the core’s crystallization history and active geodynamical forcing. Previous studies suggested that hcp‐Fe is weak under deep Earth conditions but did not investigate the effects of the lighter elements known to be part of the inner core alloy. Here, we present results from radial X‐ray diffraction experiments in a diamond anvil cell that constrain the strength and deformation properties of iron‐nickel‐silicon (Fe–Ni–Si) alloys up to 60 GPa. We also show the results of laser heating to 1650 K to evaluate the effect of temperature. Observed alloy textures suggest different relative activities of the various hcp deformation mechanisms compared to pure Fe, but these textures could still account for the theorized polar alignment. Fe–Ni–Si alloys are mechanically stronger than Fe and Fe–Ni; extrapolated to inner core conditions, Si‐bearing alloys may be more than an order of magnitude stronger. This enhanced strength proportionally reduces the effectivity of dislocation creep as a deformation mechanism, which may suggest that texture developed during crystallization rather than as the result of postsolidification plastic flow. 
    more » « less